	Mechanical Engineering Department	
	T Sheet-I	Subject : Applied Thermodynamics-I
	Topic: Vapour Power Cycles	Due date of Submission: 6 th May 2020
Q.1	 (a) Steam is supplied, dry saturated at 40 bar is 0.035 bar. If the plant operates on the Ranking (i) the work output neglecting the feed-pum (ii) the work required for the feed pump; (iii) the heat transferred to the condenser of water required through the condenser if th to be 5.5 K; (iv) the heat supplied; (v) the Rankine efficiency; (vi) the specific steam consumption. (b) For the same steam conditions calcula consumption for a Carnot cycle operating with 	to a turbine and the condenser pressure e cycle, calculate, per kilogram of steam: up work; booling water, and the amount of cooling the temperature rise of the water is assumed the the efficiency and the specific steam
Q.2	Repeat the above problem for a steam supply condition of 40 bar and 350°C and the same condenser pressure of 0.035 bar. (1125 kJ; 4 kJ; 1857 kJ; 80.7 kg; 2978 kJ; 37.6%; 3.21 kg/kW h)	
Q.3	Steam is supplied to a two-stage turbine at 40 bar and 350 °C. It expands in the first turbine until it is just dry saturated, then it is re-heated to 350 °C and expanded through the second-stage turbine. The condenser pressure is 0.035 bar. Calculate the work output and the heat supplied per kilogram of steam for the plant, assuming ideal processes and neglecting the feed-pump term. Calculate also the specific steam consumption and the cycle efficiency. (1290 kJ; 3362 kJ; 2.79 kg/kW h; 38.4%)	
Q.4	A steam turbine is to operate on a simple re- saturated at 40 bar, and is exhausted to a co- pumped to a pressure of 3.5 bar at which it is at 3.5 bar. The resulting water which is at sat the boiler. For the ideal cycle calculate, neglec (i) the amount of bleed steam required per k (ii) the cycle efficiency of the plant; (iii) the specific steam consumption.	ondenser at 0.07 bar. The condensate is mixed with bleed steam from the turbine turation temperature is then pumped to cting feed-pump work,

Q.5	Steam is supplied to a two-stage turbine at 40 bar and 500 °C. In the first stage the steam expands isentropically to 3.0 bar at which pressure 2500 kg/h of steam is extracted for process work. The remainder is reheated to 500 °C and then expanded isentropically to 0.06 bar. The by-product power from the plant is required to be 6000 kW. Calculate the amount of steam required from the boiler, and the heat supplied. Neglect feed-pump terms, and assume that the process condensate returns at the saturation temperature to mix adiabatically with the condensate from the condenser. (14950 kg/h; 15880 kW)	
Q.6	In a regenerative steam cycle employing three closed feed heaters the steam is supplied to the turbine at 42 bar and 500 °C and is exhausted to the condenser at 0.035 bar. The bleed steam for feed heating is taken at pressures of 15, 4, and 0.5 bar. Assuming ideal processes and neglecting pump work, calculate: (i) the fraction of the boiler steam bled at each stage; (ii) the power output of the plant per unit mass flow rate of boiler steam; (iii) the cycle efficiency. (0.0952, 0.0969, 0.0902; 1133.6 kW per kg/s; 43.6%)	
Q.7		
	Explain a) isentropic efficiency .b) work ratio c) feed water heater	